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In this paper each helicity amplitude of the two-body scattering of particles with 
arbitrary spins is considered as an element of a special class of Hilbert spaces 
H E~'J. This space, which is called reproducing kernel Hilbert space (RKHS) has 
many special properties that appear to make it a natural space of functions to 
associate with the scattering helicity amplitudes. Some of the special properties 
of the RKHS are developed and then used to characterization of reproducing 
kernel (RK) of H E~'l as the solution to certain extremal problems. Then, it was 
shown that the optimal scattering state from the RKHS of the helicity amplitudes 
is analogous to the coherent state from the RKHS of the wave functions. The 
essential characteristic features of the scattering of particles with arbitrary spins 
in the optimal state dominance limit are established. An important alternative 
to the partial wave helicity analysis in terms of a fundamental set of optimal 
states is presented. 

1. I N T R O D U C T I O N  

The reproducing kernel Hilbert spaces ( R K H S )  were first s tud ied  by  
M o o r e  (1916, 1935, 1939) in connec t ion  with a genera l  theory  o f  in tegral  

equat ion .  M. G. Kre in  (1940, 1949, 1963) used  them in his f u n d a m e n t a l  
s tudies  on  the extens ion  o f  posi t ive-def in i te  funct ions  (see also Devinatz ,  
1953, 1954). In  fact  a sys temat ic  abs t rac t  theory  o f  R K H S  has been  deve loped  
by  Aronsza jn  (1943, 1950). They were also encoun te red  and  used  effectively 
in the  theo ry  o f  b o u n d a r y  value  and  re la ted  p r o b l e m s  (Bergman and  Schiffer, 
1953), con fo rma l  m a p p i n g  (Bergman,  1950; Nehar i ,  1952), numer ica l  ana ly-  
sis (Davis ,  1963; G o l o m b  and Weinberger ,  1958; Larkin,  1970; Richter ,  
1971; Mansf ie ld ,  1971), g roup  represen ta t ions  (see, e.g., Carey,  1977, 1978), 
coheren t  s tate (Bargmann ,  1961; K l a u d e r  and  M c K e n n a ,  1964; K l a u d e r  
and  Sudershan ,  1968; Pere lomov,  1972) and  e l emen ta ry  par t ic le  physics  
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(Cutkosky, 1973; Okubo, 1974; Ion and Scutaru, 1985). Perelomov was the 
first to note that the notion of coherent state (Glauber, 1963a, 1963b; Klauder 
and McKenna, 1964) and the reproducing kernel of the Hilbert space of 
wave function are the same. There are, of course, several sources that are 
basic to subject of RKHS from which the reader may gain additional insight 
into RKHS methods. Notable among these are Meschkowski (1962), Parzen 
(1967), Shapiro (1971), and Hille (1972). 

The present paper may be considered as a continuation and an extension 
of our previous paper (Ion and Scutaru, 1985) in which the two-body 
scattering amplitudes is considered as an element of a RKHS. Then we 
have shown that the RKHSs are adequate variational spaces for the descrip- 
tion of the scattering in terms of an optimum principle (Ion, 1982a,b). We 
have pointed out that the notion of the optimal scattering states and the 
reproducing kernel of the Hilbert space of the scattering amplitudes are the 
same. Then, we have indicated the unified manner in which the class of the 
dual diffractive scattering (DDS) (Ion, t981a,b) as well as the dual diffractive 
resonances (DDR) phenomena (Ion, 1981b; Ion and Ion-Mihai, 1981a,b) 
are described by the reproducing kernels. 

Our investigations are concerned with the optimal state description of 
scattering of  particles with arbitrary spins. So, in Section 2 we shall discuss 
briefly the essential definitions and results on RKHS and we give a further 
development and extension of the RKHS properties to the Hilbert spaces 
of helicity amplitudes. In Section 3 the general solutions of some extremal 
problems for scattering of particles with arbitrary spins are given. Concrete 
applications when the scattering helicity amplitudes are elements of finite- 
dimensional subspace of L2(-1,  +1) are also presented in Section 3, while 
the conclusions are summarized in Section 4. 

2. T H E  R K H S  A S S O C I A T E D  W I T H  H E L I C I T Y  A M P L I T U D E S  

Let us consider the two-body elastic scattering 

a + b ~ a + b  (1) 

where the particles a and b have the spins Sa and Sb, respectively. For the 
description of the system (1) we shall use the helicity formalism of Jacob 
and Wick (1959). Therefore, l e t f t '~ (x)  --=- (/z'/~ ~,]F(s, t)l/~agb), be the helicity 
amplitudes of the system (1) with the initial helicities t~a, ~b and final 
helicities/~', tz~,, where s and t are the squares of c.m. energy and momentum 
transfer variables while x ~ cos 0, with 0 the c.m. angle. The normalization 
is chosen in such a way that the differential cross section do'/dUtt~l(x) for 
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a given channel [tz] --- (/~dzb;/z'/z~) is given by 

do-t~] 
d----ft-(x) = Ift"](x)[ 2, x ~ [ -1 ,  +1] (2) 

I 
+1 

o'~ 1 = 217" Ift"l(x)[ 2 dx = 2rrllft,=]ll = 
-1 

(3) 

of f l"] (x) ,  Since we will work at fixed energy, the dependence 
do'/d~t~'](x) and cr~ "1 on this variable was suppressed. 

Let [dcr/d~](x),  ere1 and trT be the unpolarized (differential, elastic 
integrated and total) cross sections, respectively. Then we have 

~-~(x) 1 &r r"l 
( 2 & + 1 ) ( 2 & + l )  y" --d-d - (x ) '  x , [ - 1 ,  +1] (4) 

[ . ]  

1 
V or[~] 

~~ ( 2 S o +  1 ) ( 2 & +  ~ z. ~, (5) 11 [ . ]  

1 
~  Z ~rtT "~ (6) 

[ .o]  

where [/col = (/zd~b;/zd~b). For the [/col elastic channels Imft~ol(1) and 
o@o] are related via optical theorem 

o@o~ = k l m f [ " d ( 1 )  (7) 

k being the c.m. momentum. 
Now, an important step in description of the scattering in terms of an 

optimum principle is to consider that each helicity amplitude f t , l  is an 
element of a functional Hilbert space defined on the interval S -= [ -1 ,  +1] 
with the inner product ( , )  and norm [[ [I given by 

I +1 (f[M, g[.l> = fts'l(x)g["](x) dx (8a) 
--1 

[ [ f [Mii2  = ( f [ . l ,  fb.]) < 0o (8b) 

Definition 1. A functional Hilbert space H E"] is a Hilbert space of 
complex-valued functions on a (nonempty) set S with two natural require- 
ments: (i) the evaluation functionals on H b'] are linear, and (ii) the evalu- 
ation functionals on H[M are bounded, i.e., to each y in S there correspond 
a positive finite constant CEy "1, such that 

I f t " l ( y ) [ -  CEy"ll[ft"l[[, a l l f r"]  ~ H ["J (9) 
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Now, we shall recall briefly some of the essential features of the 
reproducing kernel Hilbert spaces (RKHS) which we shall use in this 
investigation. 

Definition 2. A Hilbert space H of complex-valued functions defined 
on a set S is called RKHS if it enjoys the following reproducing property. 
There exists a complex-valued function K(x, y) on S x S, called reproducing 
kernel (RK), such that (i) for any fixed y ~ S, K e is in H, (ii) Ky(x) = K(x, y) 
induces the reproducing property 

( f  K y ) = f ( y )  (10) 

for each f ~  H, and any y ~ S. Ky is called the reproducing element for the 
point y, while the totality of reproducing elements is RK of H. 

Theorem 1. A Hilbert space is a RKHS if and only if it is a functional 
Hilbert space. 

This result, which is a consequence of the Frechet-Riesz representation 
theorem [see Davis (1963), Theorem 9.3.3], tells us that a Hilbert function 
space H is an RKHS if and only if the evaluation functional is bounded 
[see Higgins (1977)]. 

Corollary 1. If  each fE~,J ~ Ht~,a is continuous, then H E~l is a RKHS. 
The converse of this corollary is not true. Letho (1952) has given an example 
of RKHS which contains discontinuous functions. 

Most of the important properties of RKHS are discussed by Aronszajn 
(1950), Parzen (1958, 1967), Hajek (1962), and Meschkowski (1962). In the 
following a few of the RKHS properties are listed. In order to give some 
idea of the simplifications made possible 
some of the elementary proofs are given 

(A) Autoreproducing Properties. Let 
Then 

(K,, Kx) = Ky(x) = K(x, y), 

K(x,y)=K(y,x),  ]K(x, 

for any x, y in S. 

by the reproducing property (10) 
here. 
K be the RK of H defined on S. 

Ilgell  2 = K(y, y) ( l l a )  

y)12<-K(x,x)K(y,y) ( l i b )  

Proof These properties follow readily from the definition (10b). 
(B) Uniqueness of RK. If  a RKHS has two RK K and R, they must 

be identical. 

Proof: 

IIKy- RelI2=<Ky- Re, K~>-<Ky- Re, Re> 
=K(y,y) -R(y ,y) -K(y ,y)+R(y ,y)=O �9 
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(C) Uniqueness of  RKHS. Two RKHS H and G both defined on S, 
which have the same RK K, must be identical. 

Proof. Let ( , )H and ( , ) 6  be the corresponding inner products in H 
and G, respectively. Then, for every (x, y) c S x S we write 

(Ky, Kx)H = K(x, y) = (Ky, Kx)o 

From this one can show [see Parzen (1958), congruence theorem] that there 
exists an isometric mapping ~ from H to G with the property O(Ky) = Ky. 
Now, if g in G correspond under 0 to f in H, then f (y)  = g(y) for every 
y in S, because 

f (y)  = (f, Ky)H = (g, Ky)o = g(y) [] 

(D) Completeness of {Ky, y ~ S}. Let K be the RK of H on S, then 
the set (Ky, y ~ S} is complete in H, i.e., their finite linear combinations are 
dense in H. 

Proof. The reproducing property (g, Ky) = g(y),  y r S, implies that only 
vector g orthogonal to each Ky, y ~ S, is g = 0. III 

(E) Pointwise, Weak and Strong Convergence. Let K be the RK of the 
RKHS H defined on S. Then, the weak and, hence, strong convergence of 
a sequence {fn} to f in H implies the pointwise convergence offn (y) to f (y)  
for any y in S. The convergence is uniform over any subset of S for which 
K(y, y) is hounded. 

Proof. By Schwartz inequality and the reproducing property (10) we 
have 

I fn (y ) - f (y ) [  = I ( f , - f ,  Ky)] <_ [Ifn-fl] 11Ky ][ 

=]Jfn-fll[K(y,y)]I/2--,O as n - .  oo �9 

Positiveness o fK(x ,  y). If  K is the RK of H defined on S, then (F)  
K(x, y) is a function positive-definite on S x  S, i.e., 

N 

aiajK (yl, y~) > O 
z,J 

for all finite sets {ai} c C and {Yi} c S. 

(12) 

Proof We give the integer N, {ai}c C and {yi}c S, i = 1 , . . . ,  N, and 
we define the vector & = F ~ I  aiKyi in H [see property (D)]. Then, we write 

N 

0 <- (oh, 42) = E (llaj(Krj, Kyi) = E d~ajK(yi, yj) > 0 
l ,J l,d 

since (Kyj, Ky,) = K(yi, yj). �9 
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(G) Minimum Norm Property of RK. If  K is the RK of H defined on 
S, then the function f =  bKy, b = a[K(y, y)]-l ,  K(y, y) ~ O, is the unique 
solution of the minimum norm problem: Minimize Ilfll subject to f ~  H, 
f ( y )=a ,  a~C,  yeS .  

Proof. Using (10) and Schwarz inequality we get 

[f(Y)l = [(f, Ky)[ <--[IKy[I Ilf[] = [K(y, y)]l/2Hfl] (13) 

for all f c  H and y ~ S, the equality holding in (12) if and only if 

K(x,y)  K(x, y) 
- -  a ~  bKy(x). �9 (14) f (x)  = f ( y )  K(y, y) K(y, y) 

(H) Smoothness. Let K be the RK of H defined on S. If K is a continuous 
function on S x S, then the functions in H are continuous on S. 

Proof. We write 

I f ( x ) - f ( y ) [  = I(f, K x -  gy)l <-[[f[[ IIKx- K, II 
=[[f l l{K(x,x)-2K(x,y)+K(y,y)}-- ,O a s x ~ y  

for any x, y, in S, since K is continuous. �9 

(I) Calculation of RK. Let K be the RK of H defined on S. If  {~b,} 
is a complete orthonormal sequence in H, then 

K (x, y) = Y~ 6,,(x)~.(y) (15) 
r l  

Proof We write Ky(x) = K(x, y). Then, for each y e S, we consider the 
expansion 

Ky = E (Ky, qb.)d~. = E r 
n r l  

since (Ky, ~b,)= ~b,(y). �9 

(J) Overcompleteness of {Ky, y ~ S}. Let K be the RK of H defined 
on S. Then, the full set (Ky, y c S} is overcomplete in H. That is, there must 
be certain linear dependencies among the vectors Ky, i.e., only a subset of 
{Ky, y ~ S} span H. 

Proof. This property is connected with the "resolution of unity" of 
which real meaning is embodied in the following integral representation 

I; ( f  g) = ( f  Kt)(K,, g) dt, a l l f  g e H (16) 
1 
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from which we get 

I +1 Ky = (Ky, Kt)Kt dt (17) 
--1 

which express Ky in terms of all the reproducing elements K,, t e S. This 
is one of the most characteristic properties of the overcomplete set {Ky, y e 
S}. The validity of (16) is obtained using the definition (8a) and the 

reproducing property (10). �9 

Remark 1. The denseness of {Ky, y e S} shows that the RKHS H can 
be regarded as a closure of the linear space G of functions of form ~ o~Ky~, 
{ai} c C and {y~} c S, while the property (E) shows that this closure can be 
obtained by taking pointwise limits of sequences in G rather than limits in 
the RK norm. 

3. O P T I M A L  STATES V E R S U S  R E P R O D U C I N G  K E R N E L S  

Now, the helicity amplitudes fE~l will be determined by optimization 
methods assuming that the system (1) behaves so as to minimize the 
integrated unpolarized elastic cross section subject to some constraints. This 
approach, by which the system is completely specified by identifying the 
criterion of effectiveness and applying optimization to it, is known as 
describing the system in terms of an optimum principle. 

Therefore, let us consider that each helicity amplitude f E~'1 is an element 
of a RKHS H ~1 defined on the interval [ -1 ,  +1]. 

Corollary 2. If  K C~j is the RK of H [~1, f t ~ l e  H E~l, then for each 
y e [-1,  +1] for which fE,3(y) ~ 0, Kt"l(y, y) ~ 0, the functionals (2) and 
(3) must obey the inequality 

do-[~] o-el[~] 
df l  (y) <- 2~- Kt~I(Y' y) (18) 

the equality holding in (18) if and only if 

~.[~]tx~ =r[~]f .  ~ ~ ~z,y; x e  [-1,  +1] (19) J ~ i J ~YlKl~](y ,y ) ,  

Definition 3. The scattering state of the system (2.1) described by the 
helicity amplitude (19) is called optimal state of the channel l/z]. 

Remark 2. If  in (19) we put f E , l ( y ) = K t ~ l ( y , y ) ,  then fc"~(x)= 
KEel(x, y). Hence the notion of optimal state and the reproducing kernel 
of H t~] are the same. With this respect the optimal state from the RKHS 
of the scattering amplitudes is analogous to the coherent state from the 
RKHS of the wave function. 
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The following corollary lists different equivalent extremal properties 
of the optimal states (19). 

Corollary 3. If K t"] is the RK of H t~'j, and if KEel(y, y) ~ O, y ~ [-1,  1], 
then (i) functions of form bt"]K t"l minimize IIf[~]l[ I f t~](y) l -~ subject to 
f tu]e  Ht,J, f[,~(y) # 0, and maximize If[~'](y)l IlfC~Jll - '  subject to f t~]c  
HIll, ft~,l r 0, (ii) functions of form bt"~K~y ~, where Ib} 2= [KC"a(y, y)]-~, 
maximize Ift~](y)l subject to f t " ] c  H E"l, I l f t~l l  = 1. 

Next, let us define the following extremal problem. 

Problem A. Minimize o'er subject to fE~JcH[~'], when [dcz/df~](y), 
y ~ [ - 1 ,  +1], is fixed. In order to solve problem A we use the Lagrange 
multiplier method [Wilde and Beightler (1967)] which in essence is based 
on transformation of the constrained minimization problem into an uncon- 
strained problem. Therefore, let {et, "1} be a complete orthonormal sequence 
in the RKHS H t~] with the RK given by 

KE'1( x, Y) = 2 et,'](x) e~'](Y) (20) 
n 

and consider the expansion 

ft~](X-)= 2 [~] b.J C.  e .  (x), 
n 

Ct.'l=(ft'l,e.). C. eC  (21) 

Then, the functionals (4), (5) are given by 

dd~ (x)_ 1 ~ C~.]e~.](x) 2 
(2S~ + 1)(2Sb + 1) ~ 

(22a) 

1 
(2Sa + 1)(2Sb + 1) 2 '~ ,.-~r,. ,1~]12 (22b) O ' e l  

Now, we introduce the variational function 

~ =  Z ZtC~]I 2+a  (2S~+I)(2Sb+I)-S--A-~(Y)-- Z ~ CE.~let."l(Y) 

where a is a real Lagrange multiplier, and problem A is reduced to the 
unconstrained minimization problem 

5f(C~ "], CE2~],..., C~"l, . . . ,  a) ~ minimum (23) 
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Now, if the stationary solution of the problem (23) is denoted by C t#], 
&, then from the variational equations we obtain 

6t l_,* _ &f[~.l(y) (24a) 

1 O'el 

- KL ~] (y ,  y )  - 2 7 r ( d o ' / d f ~ ) ( y )  (24b) 

* * Kt"l(x' Y) (24c) 
f[~'](x) = f t . l ( y )  Kt"](Y, Y) 

for all [/z] and y ~ [ -1 ,  +1] for which fE.](y) ~ 0 and KEel(y, y) # O. 
On the other hand one can verify that the Lagrange multiplier 3~ satisfies 

the condition that the Hessian corresponding to second derivatives of ~ is 
a nonnegative definite matrix for minimum. Then we have obtained the 
following result. 

Theorem 2. If K is the RK of the RKHS H [~] and f[~,l ~ HE~1 then 
the functionals (4) and (5) must obey the bounds 

d•(y) try1 ~ 
<--~-~KL~J(y,y) (25) 

for all [/x] and y ~ [ -1 ,  +1] for which f i l l (y)  ~ 0 and Kil l(y,  y) ~ 0. The 
equality holds in (25) if and only if 

K["] (x ,  y )  o'~1 
fb . l (x  ) = f r . l ( y )  K["](Y, Y) =f t . ] (y )27r (d /d12) (y)  KE~I(x' y) (26) 

In particular, when the set {en} in H [~] is the set of usual rotation 
functions {d~(x ) ,  x ~ [ -1 ,  +1]} [see Rose (1957), Edmonds (1957)], then 
the helicity scattering amplitudes f[~,l are written in terms of partial ampli- 
tudes f~ ' ]  as 

f i l l ( x )  = • (2j+ 1)f~]d~(x)  (27a) 
Y~in 

where 

_ ! ! .  Iz =/za --/Xb, u --/za--/Xb,, [~] =- (garb; ~ ' ~ )  

(27b) 

Then, one can verify that (i) the helicity amplitudes f ig]  is an element 
o f a  RKHS H [~l defined on [ - 1 , + 1 ]  if and only if J~ < ~ ,  and (ii) H [~] 
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possess the reproducing kernel 

K[~'](x, y) = • (j+�89 
J~ in  

[(j~, + 1)2_ 2],/2[(j~, + 1)2_ u2],/2 

2(J~, + 1) 
J + 1  J J J + 1  - d ~ ( x ) d ~  (y) x d#~ (x)dr (28a) 

x - y  

KE~q(Y, Y) = [(j~ + 1)2_/.~2],/2[(j~ + 1)2 _ u2],/2 
2(Ju + 1) 

" J  + 1  J " J  J + 1  •  (y)d~(y)-  (28b) d~(y)d~ (y)} 

where dJ~(x) = d dJ~(x)/dx. 

Theorem 3. Assume that each helicity amplitude ft~l is an element of 
a Hilbert space H [~J which possesses the reproducing kernel (28a,b). 

(i) Then, if o.e~ and (do.Ida) (1) are given, any cutoff J~ on the total 
angular momentum must obey the bound 

�9 do" 
(J~ + 1) 2>4~ dO (1)+/z2 (29) 

o"el 

(ii) The equality holds in (29) if and only if ft~J(x) is the optimal 
amplitude 

Kt'~ltx 1) 
fE~'](x ) = / ' E ~ ] ( I " ~  - ~  , , ~ ,  

a ~'Kt~](1,  1) 

=ft~l(1) 1 dJ~(x)-dJ~(x)  (30a) 
J~+ l  x - 1  

where 

4~r do. 
J.  = integer (or half-integer){ [~-~l ~--~(1)+/z2 ] 1/2--1} (30b) 

(iii) The logarithmic slope of the forward diffractive peak is indpeen- 
dent of [/~] and is given b y  

d [In do" 

~2[4~r do. . "1 
='~-L~l~--~(1)- 1J = b~o ~q (31) 
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(iv) The forward diffraction peak of the optimal phenomena described 
by equations (30a,b) possesses the scaling property 

(do-~diD(l) ~--~ (x) = (32a) 

with the scaling variable 

7"= A2 t 4qr do- . .  

where J l(r)  is the Bessel function of first order. 

Proof. The results (i) and (ii) are obtained by introducing the kernel 
(28a,b) in (25) and (26). An important step here is the equality [see equation 
(24b)] 

4~ do'(1 ) = 2Kt.l(1, 1) = (J~ + 1) 2 - / z  2 
o-~l dO 

47r do- t~l 
- - ( 1 )  (33) 

o-[d ] d r  

for all [/z] for which K["](1, 1)#0.  Then, the results (iii) and (iv) are 
derived using the definitions (4), (31), the equality (33) and the following 
relations: 

d:~(x)=Jl~_~l[(2J+l)sin2] (34) 

where J l~-~l  a r e  the Bessel functions of I/~ - v I order. The equality bto ~'1 = bo 
for each [p,] with/,~ = v are direct consequences of the relation (33). Also, 
we have used the results 

d[Kb'l(x, 1)] 
s  2-C,-6 j x=l 

since 

jl•_ 1) [ "d d ~ ( 1 ) ]  = 2( ~f l (1)  - "'J J~(J~ + 2)- /z2  4 

(35a) 

d 2 

d~.(1) =~xx[d~(x) ]  x=l 

_ #(/z2- 1) + 2 [ j ( j  + 1) -/z(p~ + 1)] 

+ ~[J(J + 1) - (/x + 1)(/z + 2)] [J(J  + 1) - /z( /z  + 1)] (35b) 
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We note that (31) is an exact result while (32a,b) is valid only for large 
values J~ [given by (30b)] and small angles. �9 

Theorem 4. Assume that each helicity amplitude f t ,1  is an element of 
RKHS H ['~] with RK (28a,b) and that the points y~ ~ [ -1 ,  +1], i = 1 , . . . ,  N 
are the zeros of the Jacobi polynomial corresponding to the rotation function 

J +1 d ~  (x). 
(i) Then, the set 

Ki l l ( x ,  Yi) ] +1 d ~  (x) 
KUd(y~,y~) (x .j+~ , i = 1 , . . ,  m (36) 

- y i ) d ~  (Yi) 

called fundamental optimal states (FOS) system, is a complete orthogonal 
set. 

(ii) The helicity amplitude f i l l ( x )  is expanded in terms of these 
optimal states as follows: 

and 

N_ K[~I(x, Yi) 
ft~](x) = ~ f (Y,)  

K!~l(yl, Yi) i=1 

N - - J + l (  x a .v  ,x) 
= 2 f(Y,)  ~=l (x - y , ) d ~ l ( y , )  

~ 1  N dcr[M 
2# = i -~, - -~- (Y ' )  1 - Kt~l(Yi, Yi) 

2(J~ + 1) 
= [(j~ + 1)2_/z2]w2[(j~, + 1)2_ 2], /2 

( dtr / d f~ )E" J(Y') 
X " J  +1 J i=l d ,~ ( y , )d~(y , )  

(37) 

(38) 

(iii) The partial helicity amplitudes are expressed in terms of f(yi),  
i=  1 , . . . ,  N, as follows: 

(J~, + 1) 
f~ ' ]  _ [(j~ + 1) 2-/z2]l/2[(J~ + 1) 2 -  v2] 1/2 

N d j ~v(Yi) 
x X ~ [ " ] "  " J kYl) "Tj +lz , . j  , , (39) 

~=1 a ~  kYOa~AYi) 

for all [/z] and j_< J,, and f ~ " l = 0  for j >  J,. 
(iv) The helicity amplitude (37) is the element of H ["] of least norm 

where f t"](yi)  are given for all yi 6 [ -1 ,  +1], i = 1, 2 , . . . ,  N. 
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Proof  The results (i)-(iii) are obtained from the property (D) [see 
Section 2], equations (28a,b) and 

(k-[~] /4[~]~ = K[y~l(yi) = K[~'](yi, yj) = KiWI(y,, y~)6u (40) 
~ Y j  ' ~ Y l  I 

The result (iv) is proved by solving the following optimization problem: 
find an element of H [~2 of least norm whenf[~](y~), i -- 1 , . . . ,  N, are given. 
The general solution of this problem is [see Ion and Scutaru (1985), Theorem 
4]: 

N A~/~ ] 

,~1 f (Y i )  ~ Ni A~ ] f i l l ( x )  = .= A-~' 0 (41) 

where A~ ] = det[K[~'J(yi, yj)] , . i , j  = 1, 2 , . . . ,  N,  while A~i ] is the determinant 
obtained from A~ 2 by the substitution of the row i with the following 
elements: KEUl(x, Yl),  K i l l ( x ,  Y2), . . . , KEel( x, YN). Then, since the points 
Yi e [ -  1, + 1 ] in our case satisfy the conditions (40) we get the results (iv). �9 

R e m a r k  3. For the RKHS H ["j with the RK (28a,b) the FOS system 
(36) is the system of fundamental polynomials [see Davis, 1963, p. 33] for 
the Lagrange interpolation when the helicity amplitude is given in the zeros 
of Jacobi polynomials corresponding to the rotation functions dJ,+l(x) .  

4. CONCLUSIONS 

In this paper we have applied the RKHS method to the two-body 
scattering of particles with arbitrary spins. Then, as a first step in description 
of the scattering in terms of an optimum principle, we have considered that 
each helicity amplitude f[~] is an element of a functional Hilbert space 
H r~l defined on [-1,  +1]. Then, since the linear functionals are bounded 
for each y c [ -1 ,  +1], the Hilbert space H E~] is a RKHS (see Definition 2, 
and Theorem 1). 

The conclusions of this paper may be summarized as follows. 
(1 ~ The RKHS's are a special class of Hilbert spaces that have many 

special properties such as (a) autoreproducing of RK, (b) uniqueness of 
RK, (c) uniqueness of RKHS, (d) completeness of the set {Ky, y c [ -1 ,  +1]}, 
(e) pointwise convergence in RKHS's, (f) positiveness of RK, (g) minimum 
norm of RK, (h) smoothness, (j) overcompleteness of the full set {Ky, y c 
[ -1 ,  +1]}. 

(2 ~ The RK of the Hilbert space H ~gl of the helicity amplitudes can 
be characterized as the solution to certain extremal problems. The notion 
of optimal state (Ion, 1982a,b) for each channel [/.t] and the RK of H C"2 
are the same. With this respect the optimal state from the Hilbert space of 
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the helicity amplitudes is the analogous to the coherent state from the 
Hilbert space of the wave functions. 

(3 ~ For the RKHS H E"] the FOS system (36) is a complete orthogonal 
set. The expansion (37) of  the helicity amplitude in terms of the FOS system 
is an important alternative to the partial wave analysis. The helicity ampli- 
tude (37) in this case is an element of H ["] of least norm when ft,](y~) 
are given in the all points Yi ~ [ -1 ,  +1], i = 1 , . . . ,  N, where y~ are the zeros 
of Jacobi polynomials corresponding to d~+l(x). 

(4 ~ The predictions (31) and (32a,b) are satisfied experimentally 
to a surprising accuracy (Ion, 1982a) for all pp, ~p, ~r• K• scattering at 
all energies higher than 2 GeV. 
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